

Learning Objectives: After completing this module, you will be able to:

- Define diluent, solvent, solute, solution, and suspension
- Determine the amount of solvent required to prepare oral and parenteral powder medication
- Explain why some medications are available in powder form
- Calculate the volume to be measured when given a specific dose.
- Calculate the amount of medication in a given volume.
- Calculate powder volume, diluent, total concentration and final volume of constituted/reconstituted medications.

Summary of the entire concept

- Solids take up space

Demonstration Videos

- This video demonstrates a reconstitution of an IV medication

- Reconstitution of lyophilized injectable
- This video is a product demo but it shows how to properly constitute oral medications. Reality with theory - Yes, powder takes up space but it also clumps.
Remember to add about $1 / 3$ of the diluent volume first, shake it up, then add the remainder. I also thought it was really cool how you could add flavors at the same time with this product.
- Fillmaster Auto Demo Video FLAVORx - YouTube
- Fill Master Systems LLC Website

Examples

- Example of an injectable to be reconstituted

Reconstitution:

For I.M. Use: Add 2 mL of Sterile Water for Injection. SHAKE WELL. Withdraw entire contents. Provides an approximate volume of 2.2 mL (225 mg per mL). For L.V.Use: See insert.

Use dosage strength in calculation.

See directions on the left

AUGMENTIN ${ }^{\text {® }}$	$125 \mathrm{mg} / 5 \mathrm{~mL}$	
125mg/5mL	NOC 0029.6085-23	長 零
NSN 6505-01-408-8181Directions for mixing:	AUGMENTIN*	
	AMOXICILLIN/	
Tap bottle until all powder	CLAVULANATE	
flows freely. Add approximately $2 / 3$ of total water	POTASSIUM FOR ORAL SUSPENSION	
for reconstitution	When reconstituted,	
[Lotal $=50 \mathrm{~mL}$] shake	each 5 mL contains:	
[Cotal $=$ so midd shake	AmMoxicillin, 125 MG ,	
shake vigorously.	CLAVULANIC ACID, 37.25 MG, as clavulanate potassium	
Dosage: See accompanying prescribing information.	100 mL (when reconstituted)	LOT
Keep tightly closod. Shake well before using. Discard after 10 days:		Ex.
	S3B SmuthKıne Beecham	9405705-D

Amoxicillin $200 \mathrm{mg} / 5 \mathrm{~mL}$

- It is hard to see, but all of these bottles are the same concentration of amoxicillin $200 \mathrm{mg} / 5 \mathrm{~mL}$. They are available from the manufacturer in bottles that once reconstituted will equal either $50 \mathrm{~mL}, 75$ mL or 100 mL .

Augmentin

- This is an example of the company using different colors to help distinguish different concentrations. (Although in my opinion, they could have used something a bit more contrasting that pink and violet but maybe they are colors that don't effect people with issues with color blindness??)

Dosage and Use: See accompanying prescribing information.
Store dry powder at 20° to $25^{\circ} \mathrm{C}\left(68^{\circ}\right.$ to $\left.77^{\circ} \mathrm{F}\right)$ See USP Controlled Room Temperature]
PROTECT FROM FREEZING
MIXING DIRECTIONS: Tap bottle to loosen powder.
Add 9 mL of water to the bottle.
After mixing, store suspension between
$5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ and $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$.
Oversized bottle provides extra space for shaking
After mixing, use within 10 days.
Discard after full dosing is completed
SHAKE WELL BEFORE USING.
Contains 600 mg azithromycin, USP.
KEEP THIS AND ALL MEDICATIONS
OUT OF THE REACH OF CHILDREN.
Manufactured In Croatia By:
PLIVA HRVATSKA d.o.o., Zagreb, Croatia Mdd. For: TEVA PHARMACEUTICALS USA, INC
North Wales, PA 19454

Small volume for an oral, no room for error.

Zithromax for Suspension

(azithromycin $600 \mathrm{mg} / 15 \mathrm{~mL} /$ bottle)

Shake bottle to loosen powder. To open, push down on the bottle cap while twisting the cap counterclockwise.
\pm

Measure 9 mL of cold water using the syringe then pour the water into the bottle.

I

Shake the bottle well. The total volume of the suspension will be 15 mL .

Open the bottle cap. Push plastic stopper into bottle top.

Insert syringe into bottle top. Push down on syringe handle to allow air into bottle. Reverse bottle and pull back syringe handle, drawing prescribed dose of medicine into syringe.
>Do not use the medicine and an antacid at the same time. If needed, take this medicine one hour before, or two hours after taking an antacid
$>$ This medicine can be taken with or without food. If diarrhea, nausea, or vomiting occurs, take it with food
$>$ Before reconstitution, keep tightly closed and store in a dry place below $30^{\circ} \mathrm{C}$
$>$ Once dispensed, the suspension can be stored at room temperature $\left(5-30^{\circ} \mathrm{C}\right)$ and used within 10 days.
>Shake the medicine well just before measuring each dose

- If you miss a dose or forget to use your medicine, use it as soon as you can. If it is almost time for your next dose, wait until then to use the medicine and skip the missed dose. Do not use extra medicine to make up for a missed dose
>Reconstitute a new bottle of medicine after running out of an old one

Solutions Using Powders

- In the preparation of solutions, the active ingredient is discussed in terms of weight, but it also occupies a certain amount of space.
- For lyophilized (freeze-dried) pharmaceuticals that are packaged in a sterile vial and used for reconstitution, this space is referred to as powder volume (pv).
- Powder volume equals the difference between the final volume (fv) and the volume of the diluting ingredient, or the diluent volume (dv).

```
powder volume (pv) = final volume (fv) - diluent volume (dv)
    or
    pv=fv-dv
```


Solutions Using Powders (continued)

Example

A powdered antibiotic must be reconstituted for use. The label states that the dry powder occupies 0.5 mL . Using the formula for solving for powder volume, determine the diluent volume (the amount of solvent added) for each of the final volumes listed below.

Final Volume	Powder Volume
2 mL	0.5 mL
5 mL	0.5 mL
10 mL	0.5 mL

Do you like puzzles?

Here are my keys to solving these problems.

- Five potential X values, so you may have to do more than one calculation
- You may be missing more than one value and have to calculate it from the information given
- Spend time with the next few slides really understanding the basics.

5 Potential X Values

1 Amount of Drug
2 Amount of Diluent
3 Powder Volume
4 Total Volume of Drug Mixture
5 Concentration of Drug Mixture

Amount of Drug

- Amount of Drug

- Amount of Diluent

Amount of Diluent + Powder Volume = Total Volume of Drug Mixture

Drug in dry powder form
https://nursekey.com/calculating-parenteral-doses-small-volume/

Addition of 5 mL water for injections

Total volume
produced $=5.2 \mathrm{~mL}$

Addition of 4.8 mL water for injections

Total volume produced $=5 \mathrm{~mL}$

Concentration of Drug Mixture It can be written in many different ways and sometimes in multiple ways.

23.4\%
23.4 G / 100 mL

234mg/mL

This one gives you choices of volumes to add for different final concentrations. We can do this for other drugs using our knowledge of powder volume.

Solutions Using Powders (continued)

Example (continued)

```
Rearrange the formula to dv = fv - pv
pv=fv-dv
pv+dv = fv
dv=fv-pv
dv = 2 mL - 0.5 mL = 1.5 mL
dv = 5 mL - 0.5 mL = 4.5 mL
dv = 10 mL - 0.5 mL = 9.5 mL
```


Solutions Using Powders (continued)

Example

You are to reconstitute 1 g of dry powder. The label states that you are to add 9.3 mL of diluent to make a final solution of $100 \mathrm{mg} / \mathrm{mL}$. What is the powder volume?

To determine the powder volume, you must also know the final volume and diluent volume. The diluent volume has already been provided, so begin by calculating the final volume. You can find the final volume by using the final concentration of the solution.

Solutions Using Powders (continued)

Example (continued)

Using the ratio-proportion method:
Convert 1 g to $1,000 \mathrm{mg}$.

$$
\begin{aligned}
\frac{1,000 \mathrm{mg}}{x \mathrm{~mL}} & =\frac{100 \mathrm{mg}}{1 \mathrm{~mL}} \\
x \mathrm{~mL}(100 \mathrm{mg}) & =1 \mathrm{~mL}(1,000 \mathrm{mg}) \\
\frac{x \mathrm{~mL}(100 \mathrm{mg})}{100 \mathrm{mg}} & =\frac{1 \mathrm{~mL}(1,000 \mathrm{mg})}{100 \mathrm{mg}} \\
x & =10 \mathrm{~mL}
\end{aligned}
$$

Solutions Using Powders (continued)

Example (continued)

Using the dimensional analysis method:

$$
1 \mathrm{~g} \times \frac{1,000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{1 \mathrm{~mL}}{100 \mathrm{mg}}=10 \mathrm{~mL}
$$

Then, using the calculated final volume and the given diluent volume, determine the powder volume.

$$
\begin{aligned}
& \mathrm{pv}=\mathrm{fv}-\mathrm{dv} \\
& \mathrm{pv}=10 \mathrm{~mL}-9.3 \mathrm{~mL} \\
& \mathrm{pv}=0.7 \mathrm{~mL}
\end{aligned}
$$

Example 1

- The label of a 10 g vancomycin vial states that if you add 95 mL of sterile water to the vial's contents you will get a concentration of $1 \mathrm{~g} / 10 \mathrm{~mL}$.
What concentration do you get if you add 45 mL ?

1 Amount of Drug =
2 Amount of Diluent = \qquad
3 Powder Volume = \qquad
4 Total Volume of Drug Mixture =
5 Concentration of Drug Mixture = \qquad
*Use blank space below to work problem in class

Amount of Diluent + Powder Volume = Total Volume of Drug Mixture

*Use blank space below to work problem in class

So now, what do we know?

1 Amount of Drug = 10 g
2 Amount of Diluent $=95 \mathrm{~mL}$
3 Powder Volume = 5 mL
4 Total Volume of Drug Mixture $=100 \mathrm{~mL}$
5 Concentration of Drug Mixture $=1 \mathrm{~g} / 10 \mathrm{~mL}$

But, what did the question ask? The question want to know WHAT CONCENTRATION do you get if you add 45 mL ? So our X is now \# 4 but with a new \# 2. So if we plug in what we know with the new diluent value se have...

1 Amount of Drug $=10 \mathrm{~g}$

2 Amount of Diluent $=\mathbf{4 5} \mathbf{~ m L}$
3 Powder Volume = 5 mL
4 Total Volume of Drug Mixture = X
5 Concentration of Drug Mixture $=\mathbf{X}$
We still have 2 unknowns (Xs) but make sure you understand that the powder volume does not change. It will always be the same so no need to calculate that again. Now to get the total volume (\# 4), just add the amount of diluent to the powder volume ($45 \mathrm{~mL}+5 \mathrm{~mL}=50 \mathrm{~mL}$)

1 Amount of Drug $=10 \mathrm{~g}$
2 Amount of Diluent $=45 \mathrm{~mL}$
3 Powder Volume = 5 mL
4 Total Volume of Drug Mixture $=50 \mathrm{~mL}$
5 Concentration of Drug Mixture = X

- So now to get the final concentration we just need to know how much drug per mL of drug product (solution or suspension)
- Still have 10 g of vancomycin in now 50 mL so

I will tell you it will need to be converted to mg so $10 \mathrm{~g}=10,000 \mathrm{mg}$.
10,000mg x mg
$\frac{}{50 \mathrm{~mL}}=\frac{X=200 \mathrm{mg} / \mathrm{mL}}{1 \mathrm{~mL}}$

Solutions Using Powders (continued)

Example (continued)

> Rearrange the formula to $d v=f v-p v$
> $p v=f v-d v$
> $p v+d v=f v$
> $d v=f v-p v$
> $d v=2 \mathrm{~mL}-0.5 \mathrm{~mL}=1.5 \mathrm{~mL}$
> $d v=5 \mathrm{~mL}-0.5 \mathrm{~mL}=4.5 \mathrm{~mL}$
> $d v=10 \mathrm{~mL}-0.5 \mathrm{~mL}=9.5 \mathrm{~mL}$

Solutions Using Powders (continued)

Example

You are to reconstitute 1 g of dry powder. The label states that you are to add 9.3 mL of diluent to make a final solution of $100 \mathrm{mg} / \mathrm{mL}$. What is the powder volume?

To determine the powder volume, you must also know the final volume and diluent volume. The diluent volume has already been provided, so begin by calculating the final volume. You can find the final volume by using the final concentration of the solution.

Solutions Using Powders (continued)

Example (continued)

Using the ratio-proportion method:
Convert 1 g to $1,000 \mathrm{mg}$.

$$
\begin{aligned}
\frac{1,000 \mathrm{mg}}{x \mathrm{~mL}} & =\frac{100 \mathrm{mg}}{1 \mathrm{~mL}} \\
x \mathrm{~mL}(100 \mathrm{mg}) & =1 \mathrm{~mL}(1,000 \mathrm{mg}) \\
\frac{x \mathrm{~mL}(100 \mathrm{mg})}{100 \mathrm{mg}} & =\frac{1 \mathrm{~mL}(1,000 \mathrm{mg})}{100 \mathrm{mg}} \\
x & =10 \mathrm{~mL}
\end{aligned}
$$

Solutions Using Powders (continued)

Example (continued)

Using the dimensional analysis method:

$$
1 \mathrm{~g} \times \frac{1,000 \mathrm{mg}}{1 \frac{\mathrm{~g}}{\mathrm{~g}}} \times \frac{1 \mathrm{~mL}}{100 \mathrm{mg}}=10 \mathrm{~mL}
$$

Then, using the calculated final volume and the given diluent volume, determine the powder volume.

$$
\begin{aligned}
& \mathrm{pv}=\mathrm{fv}-\mathrm{dv} \\
& \mathrm{pv}=10 \mathrm{~mL}-9.3 \mathrm{~mL} \\
& \mathrm{pv}=0.7 \mathrm{~mL}
\end{aligned}
$$

PHM 115 Week 9

- Read pages 198-201 of Pharmacy Calculations for Technicians (PCfT)
- Complete the learning materials
- Compete problems 17-25 on pages 202-203

